
Download free eBooks at bookboon.com

Perl for Beginners

78

User-defined functions

16 User-defined functions

16.1 Adapting Perl to our own tasks

In chapter 7 we saw that Perl includes dozens of built-in functions, such as sqrt(), substr(),
rand(), and we examined a few of them. But often we need our program to execute some specific
function that does not feature on the list of built-in functions, perhaps because it relates too closely to the
particular task we are working on. In that case, we will need to create our own user-defined function.

For instance, in our code-chunk (18) to read in a file of county population data, one of the actions was to
replace any sequence of one or more whitespace characters internal to a string with a single underline
character, so that a string of the form, say,

Cambridgeshire and Isle of Ely

is turned into:

Cambridgeshire_and_Isle_of_Ely

In our program this was handled by a single line, line 18.14:

$name = join("_", split(/\s+/, $name));

But in a larger program, which perhaps has to read various kinds of data in from several different files,
there might be numerous situations where we want to make names more “machine-friendly” by carrying
out this same routine of changing internal whitespace to single underline characters. We could copy 18.14
at every point in the program where this routine needs to be executed, replacing $name with whatever
variable the routine needs to be applied to at the point in question. But 18.14 is a complicated thing to type
out (even in its newer form – in its original form as line 12.14 of program (12) it was even more fiddly); it
is inefficient and invites errors to repeat such details at different places in a program.

What we need to do is define a function, call it despace(), which takes a string as argument and does
to it what 18.14 does to the string $name. Once the despace() function is defined, we can simplify
(18) by replacing 18.12 (which assigns the value of the temporary variable $1 to $name) and 18.14
(which, as we have seen, replaces whitespace by underlines in $name) with the single line:

$name = despace($1);

and, wherever else in a longer program we need to alter character strings in that particular way, we can do
so using a similarly concise statement.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Perl for Beginners

79

User-defined functions

16.2 The structure of a user-defined function

So how do we define the despace() function? Like this:

(19)

1 sub despace
2 {
3 my $p = shift(@_);
4 $p = join("_", split(/\s+/, $p));
5 return($p);
6 }

The keyword sub stands for “subroutine”; the terms “function” and “subroutine” are interchangeable in
Perl.26

It is logical to keep function definitions separate from the main sequence of statements that a program
executes when it is run, so commonly a function definition like this would appear either at the beginning
or at the end of the program. But Perl does not actually care where a user-defined function definition
appears; whenever Perl reaches a statement which calls that function – that is, a statement such as
$name = despace($1), whose meaning depends on the definition of despace() – then Perl will
find the relevant function definition and use it, so long as it exists in the program file somewhere.

 .

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

Download free eBooks at bookboon.com

Perl for Beginners

80

User-defined functions

What the despace() definition is essentially saying is this: “Whatever the argument of this function is
actually called, for the purposes of defining the function it will be called $p. Now $p is changed in the
way that line 18.14 changed the string $name. And after that has been done, the new version of $p is
delivered back to the code which called the function, as the result returned by the function call.” The
keyword return identifies what follows it as the result of that function call.

The only new complication in this relates to line 19.3, my $p = shift(@_). Bear in mind that at the
time we write the function definition, we don’t know what its argument will be named when the function
is used. In (18) the string which had its spaces changed to underlines was called $name, but on another
occasion we might want to apply despace() to a string called $a123, or $broccoli, or anything.
So we need an arbitrary name internal to the function definition to stand for the real name that appears in
the calling code – any arbitrary name would do, I happened to choose $p. Line 19.3 is what tells Perl that
the role of $p in the function definition is to represent the argument.

Perl does this in a more roundabout fashion than some programming languages. If Perl were more
“ordinary” in this respect, line 19.1 might run sub despace($p) – announcing the name to be used
for the argument at the same time as the function name despace is introduced. In Perl that does not
work. Instead, whenever any function is called, whatever argument(s) it is called with are assigned to a
special array name @_. (Remember that a function may have more than one argument; this applies to
user-defined functions as well as to built-in functions.) In the case of despace() there is only one
argument, so @_ will be a one-element array; and shift() will give us the first element (in this case,
the only element) of the @_ array. Line 19.3 assigns that argument to a name $p, under which name we
are free to manipulate it.

The remaining feature of line 19.3 which needs explanation is the word my. This word before a variable
name makes the variable local rather than global. If we are writing a large program, as well as many lines
of “top-level” code outside any subroutine, there may be numerous different subroutines – indeed it is
likely that some complex subroutines will themselves call lower-level subroutines, and so on down. While
we are defining a subroutine needed for some quite separate aspect of the program, we will probably have
forgotten all about the details of despace(), and we could easily decide to use the variable name $p
for some unrelated purpose in that other subroutine. Unless we explicitly declare $p as local to
despace(), the same name $p appearing in another subroutine will refer to the same variable, and
things done in one subroutine might interfere with what is intended to happen in the other. Variables are
global by default, but we want $p in despace() to be local, so that it is treated by Perl as
independent of any variables that happen to share the same name in other parts of the program. The word
my achieves that.

Line 19.3 declared $p as local at the same time as $p was assigned a value, but a my statement can
be a separate statement; we could have written:

my $p;
$p = shift(@_);

http://bookboon.com/

Download free eBooks at bookboon.com

Perl for Beginners

81

User-defined functions

If our subroutine needs several local variables, we can declare them all in a single line within brackets:27

my ($p, $q, $r);

The scope within which a variable is local does not have to be a subroutine, but that is probably the most
usual way to use my and the only one we shall discuss.

Returning to our definition of despace(): once 19.3 has defined $p as standing for the argument,
19.4 then applies exactly the same substitution operation to $p as line 18.14 applied to $name. Finally,
the word return in 19.5 defines what the function delivers to the calling code as its result – in this case,
$p as it exists after 19.4 has applied to it.

So code-chunk (18) will now be replaced by (20), in which the main part of the program contains a line
20.12 which calls the function despace() with the string $1 captured by line 20.6 as argument, and
the result of applying despace() to $1 becomes the value of $name:

(20)

1 open(INFILE, "<../data/pops/countyData.txt")
 or die "Cannot open input file\n";
2 $i = 0;
3 while ($a = <INFILE>)
4 {
5 if ($a !~ /\S/) {;}
6 elsif ($a !~ /^\s*(\S.*\S)\s+(\d+)\s*$/)
7 {
8 die "bad input line: $a\n";
9 }
10 else
11 {
12 $name = despace($1);
13 $population = $2;
15 $population *= 1000;
16 $counties[$i][0] = $name;
17 $counties[$i][1] = $population;
18 ++$i;
19 }
20 }
21 close(INFILE);

22 sub despace
23 {
24 my $p = shift(@_);
25 $p = join("_", split(/\s+/, $p));
26 return($p);
27 }

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Perl for Beginners

82

User-defined functions

16.3 A second example

The function despace() is one that applies to strings. As further practice with the concept of user-
defined functions, let’s now define a function that works with numbers.

In chapter 7 we saw that the built-in function int() turns decimals into whole numbers in a crude
fashion, which does not give the nearest whole number if the fractional part of the argument is half or
more. It could often be useful to have a function round(), which always takes a decimal to the nearest
whole number, rounding up or down as appropriate. This function is easy to define.

If you think about it, one way to get the right answer would be to add one-half (0.5) to the number we
want to round, and then apply the built-in int() function to the result. We want e.g. 3.14 to be rounded
to 3: 3.14 plus one-half is 3.64, and int(3.64) is 3; but we want e.g. 3.75 to be rounded to 4:
3.75 + 0.5 = 4.25, and int(4.25) gives 4. Well, actually, this is not quite the whole story, because we
haven’t taken negative numbers into account yet. If the argument to round() is negative, we want to
subtract one-half before applying int(), because we want round(-3.14) to be –3 and
round(-3.75) to be –4.

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

Download free eBooks at bookboon.com

Perl for Beginners

83

User-defined functions

So here is a function which will give the correct result with both positive and negative arguments:

(21)

1 sub round
2 {
3 my $n = shift(@_);
4 return($n >= 0 ? int($n + 0.5) : int($n - 0.5));
5 }

Line 20.4 uses the ?: construction to ask “Is $n positive? If yes, return the result of applying int()
to $n plus 0.5; if no, return the result of applying int() to $n minus 0.5.”

16.4 Multi-argument functions

Functions such as despace() or round(), which take a single argument, are the simplest case. To
broaden our grasp of user-defined functions, let’s look at one taking several arguments. Perhaps we are
interested in checking the average length of collections of words used in some circumstance, and we want
to count only wholly-alphabetic words, not “words” composed partly or wholly of numerals. So we want
to define a function aveWordLen() which gives results as follows:

print aveWordLen("new", "sale", "special", "executive");

5.75

print aveWordLen("leading", "99p", "bargain");

7

(The words leading and bargain both have seven letters, and 99p will be ignored because it contains
digits.)

Notice that aveWordLen() does not merely take multiple arguments; it can take any number of
arguments on different occasions. Since an array can be any length, the @_ system means that this is no
special problem.28

http://bookboon.com/

Download free eBooks at bookboon.com

Perl for Beginners

84

User-defined functions

Here is a definition for aveWordLen():

(22)

1 sub aveWordLen
2 {
3 my $total = 0;
4 my $N_words = 0;
5 my $word;
6 foreach $word (@_)
7 {
8 if ($word !~ /\d/)
9 {
10 ++ $N_words;
11 $total += length($word);
12 }
13 }
14 return($total / $N_words);
15 }

Line 22.6 assigns each string in the argument array successively to the local variable $word; 22.8 checks
that $word contains no digit, and (provided it passes the check) lines 22.10–11 increment $N_words
by one and $total by the length of $word. Line 22.14 defines the result as the total of all word
lengths divided by the number of words.29

16.5 Divide and conquer

It is clear that if a function like aveWordLen() is needed at several places in a program, it is much
better to define it once and call it by name whenever it is needed, than to copy a long chunk of code such
as the one above into all the different places where it is needed. It is not just a matter of reducing the
overall length of the code – that in itself does not matter much (though the more lines, the more
opportunity for typing mistakes). But more important is the principle of “divide and conquer”. When a
program is required to execute a complex range of processes, the programmer is much more likely to be
able to get it right if the overall functionality can be broken down into many small pieces, each of which
can be coded independently of the others – so that only a limited number of issues have to be held in the
programmer’s head at any one time. User-defined functions and local variables are a large part of the
machinery which Perl, and other languages, use to facilitate the “divide and conquer” approach.

Consequently, an important part of learning to program well is learning to notice cases where parts of a
longer process can be separated out and coded as subroutines. It is rarely a good idea for a program to
contain a lengthy “main” section (the part of the code which the machine begins to execute when the
program is run, outside all the sub’s). Good, robust software is commonly articulated into many separate
functions, so that a fairly short main section contains several function calls (and the functions will often
call further functions, and so on).

http://bookboon.com/

Download free eBooks at bookboon.com

Perl for Beginners

85

User-defined functions

16.6 Returning a list of values

Each function we have defined so far has returned a single item (a scalar). But we can also define a
function to return a list. Let’s define a function maxima() which uses our reformatted file of county
population data to identify both the largest county population and the longest county name. This is perhaps
not a very realistic task in practice – why would we want to investigate both of those two issues
simultaneously? – but it makes a good exercise. (Tasks that are useful for teaching programming concepts
often are unrealistic.)

We’ll say that in the main part of our program, outside the subroutines, there will be lines which simply
ask for the two maximum figures and incorporate them in messages to be printed out, like this:

(23)

@figures = maxima();
print ("Largest county pop. is $figures[0]\n");
print ("Longest county name is $figures[1]\n");

Largest county pop. is 7,914,000
Longest county name is Huntingdonshire_and_Peterborough

The data will be taken from the reformedData file created by program (12); and all the work of reading
these data in and working out which entries are the respective maxima will be delegated to the maxima()
function.

Remember that in the reformedData file each line contains a population figure with commas grouping
digits into threes, followed after a tab by a county name, e.g.:

353,000 Cornwall

We shall be doing arithmetic with the population figures, to discover which is largest, so maxima()
will need to remove the commas before comparing one figure with another (we know that Perl does not
recognize a string such as 353,000 as a number). We can handle this with a further user-defined
function, decomma(), which takes a string as argument and returns the string with any commas stripped
out and the gaps closed up. And when returning the maximum population as a figure ready to be displayed
to the user, it would be nice to have the commas put back in (as in the output shown in italics above); so
we shall write another function, recomma(), which will use the final version of line 12.16 (see section
11.3 above) as a routine for inserting commas in the correct places.

Here are the three functions. (I have left a blank line between them, and in typing out a program one
normally would leave some space between separate subroutines, simply for readability; Perl does not care
whether the blank line is there or not.)

http://bookboon.com/

Download free eBooks at bookboon.com

Perl for Beginners

86

User-defined functions

(24)

1 sub maxima
2 {
3 open(INFILE, "../data/pops/reformedData.txt") or
 die("Can\'t open reformedData.txt\n");
4 my($longestName, $largestPop, $line, $name, $pop);
5 $longestName = "";
6 $largestPop = 0;
7 while ($line = <INFILE>)
8 {
9 chomp($line);
10 if ($line !~ /^(\S*)\t(\S*)$/)
11 {
12 die("input line in unexpected format: $line\n");
13 }
14 $pop = decomma($1);
15 $name = $2;
16 if (length($name) > length($longestName))
17 {
18 $longestName = $name;
19 }
20 if ($pop > $largestPop)
21 {
22 $largestPop = $pop;
23 }
24 }
25 close(INFILE);
26 return(recomma($largestPop), $longestName);
27 }

28 sub decomma
29 {
30 my $numeral = shift(@_);
31 $numeral =~ s/,//g;
32 return($numeral);
33 }

34 sub recomma
35 {
36 my $popFig = shift(@_);
37 while ($popFig =~ s/(\d)(\d{3})($|,)/$1,$2$3/)
38 {;}
39 return($popFig);
40 }

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Perl for Beginners

87

User-defined functions

The function maxima(), which is a function taking no arguments, begins (24.5–6) by setting the
variables $longestName and $largestPop to the shortest possible name (the length-zero “null
string”) and smallest possible population (zero) respectively, and then looks at the name and population on
each line of the input file. Since we are taking our input data from a file we created ourselves, it should be
safe to assume that each line has the numeral + tab + name format – but just in case the reformedData file
has somehow become corrupted, 24.10 arranges for the program-run to terminate with an appropriate error
message if a line with a different format is encountered. For each population figure read in, 24.14 in the
maxima() function calls the decomma() function to change it into a form it can do arithmetic with.
Whenever maxima() finds a name or a population larger than the previous maximum found, the new
name or population replaces the current value of $longestName or $largestPop respectively as
current maximum (24.16–23). The maxima() function returns the overall maxima as a list with two
members, within which the population maximum is in the form produced by the recomma() function;
in (23), within the main part of the program, this two-member list is assigned as the value of an array
@figures.

Thus in (23) the main part of the program calls maxima(), which in turn calls decomma() and
recomma(); the return values of decomma() and recomma() contribute to calculating the return
value of maxima(), and that return value in turn contributes to executing the statements in (23). This is
how real-life Perl programs will typically be structured. The main part of the program, outside any sub
definition, may be quite short, but it will contain function calls; the subroutines they call will often
themselves contain calls to further functions, and there may be further levels below levels of user-defined
functions until one eventually gets down to functions that use only built-in Perl constructions.

 -
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future

AxA globAl grAduAte
progrAm 2015

axa_ad_grad_prog_170x115.indd 1 19/12/13 16:36

http://bookboon.com/
http://bookboon.com/count/advert/030d71a6-2f39-462d-8d1e-a41900d437e0

Download free eBooks at bookboon.com

Perl for Beginners

88

User-defined functions

16.7 “Subroutines” and “functions”

Those readers who have learned other programming language(s) before encountering Perl might be
surprised that Perl uses the keyword sub to define functions, and that I have been using the terms
“function” and “subroutine” interchangeably – as mentioned earlier, for languages other than Perl,
subroutines and functions are two different things. A subroutine does something – it carries out an action,
for instance it changes the values of its arguments in some systematic way, displays the arguments in
some format, or the like; a function calculates a value and returns it for use by another part of the program,
commonly without changing anything. And this difference in purpose is reflected, in many programming
languages, by different notation conventions.

In Perl there is no difference between subroutines and functions. All the user-defined functions we have
looked at so far contained a return statement returning a value to the part of the program which called
the function; but a Perl function does not have to contain a return statement. Here is a function which
takes a string as argument and prints out its words (elements separated by whitespace) on separate lines, in
other words it carries out an action rather than returning a value:

(25)

1 sub printlnbyln
2 {
3 my $string = shift(@_);
4 my @words = split(/\s+/, $string);
5 my $word;
6 foreach $word (@words)
7 {
8 print($word, "\n");
9 }
10 }

A program containing this function definition could have a statement like:

printlnbyln("the quality of mercy");

the
quality
of
mercy

Since printlnbyln() contains no return statement, one would not normally use a statement like:

$a = printlnbyln("the quality of mercy");

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Perl for Beginners

89

User-defined functions

(In fact Perl is organized so that even subroutines without return statements do deliver return values; but
this is one of the Perl wrinkles that is best left to the geeks. Learners are advised only to use return values
from defined functions where the return values are explicitly identified as such by return statements.)

We saw in chapter 9 that while most Perl built-in functions return values, some, such as chomp(), exist
mainly in order to change their arguments. Likewise a code block headed by a sub line can be designed
to carry out an action, it can be designed to return a value, or it can be designed do both of these. There is
no distinction between subroutines and functions, so it is reasonable to use sub as a keyword for user-
defined “functions”.

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

